3.3.21 \(\int \frac {(e+f x)^2 \sin (c+d x)}{a+b \sin (c+d x)} \, dx\) [221]

3.3.21.1 Optimal result
3.3.21.2 Mathematica [A] (warning: unable to verify)
3.3.21.3 Rubi [A] (verified)
3.3.21.4 Maple [F]
3.3.21.5 Fricas [B] (verification not implemented)
3.3.21.6 Sympy [F]
3.3.21.7 Maxima [F(-2)]
3.3.21.8 Giac [F]
3.3.21.9 Mupad [F(-1)]

3.3.21.1 Optimal result

Integrand size = 26, antiderivative size = 408 \[ \int \frac {(e+f x)^2 \sin (c+d x)}{a+b \sin (c+d x)} \, dx=\frac {(e+f x)^3}{3 b f}+\frac {i a (e+f x)^2 \log \left (1-\frac {i b e^{i (c+d x)}}{a-\sqrt {a^2-b^2}}\right )}{b \sqrt {a^2-b^2} d}-\frac {i a (e+f x)^2 \log \left (1-\frac {i b e^{i (c+d x)}}{a+\sqrt {a^2-b^2}}\right )}{b \sqrt {a^2-b^2} d}+\frac {2 a f (e+f x) \operatorname {PolyLog}\left (2,\frac {i b e^{i (c+d x)}}{a-\sqrt {a^2-b^2}}\right )}{b \sqrt {a^2-b^2} d^2}-\frac {2 a f (e+f x) \operatorname {PolyLog}\left (2,\frac {i b e^{i (c+d x)}}{a+\sqrt {a^2-b^2}}\right )}{b \sqrt {a^2-b^2} d^2}+\frac {2 i a f^2 \operatorname {PolyLog}\left (3,\frac {i b e^{i (c+d x)}}{a-\sqrt {a^2-b^2}}\right )}{b \sqrt {a^2-b^2} d^3}-\frac {2 i a f^2 \operatorname {PolyLog}\left (3,\frac {i b e^{i (c+d x)}}{a+\sqrt {a^2-b^2}}\right )}{b \sqrt {a^2-b^2} d^3} \]

output
1/3*(f*x+e)^3/b/f+I*a*(f*x+e)^2*ln(1-I*b*exp(I*(d*x+c))/(a-(a^2-b^2)^(1/2) 
))/b/d/(a^2-b^2)^(1/2)-I*a*(f*x+e)^2*ln(1-I*b*exp(I*(d*x+c))/(a+(a^2-b^2)^ 
(1/2)))/b/d/(a^2-b^2)^(1/2)+2*a*f*(f*x+e)*polylog(2,I*b*exp(I*(d*x+c))/(a- 
(a^2-b^2)^(1/2)))/b/d^2/(a^2-b^2)^(1/2)-2*a*f*(f*x+e)*polylog(2,I*b*exp(I* 
(d*x+c))/(a+(a^2-b^2)^(1/2)))/b/d^2/(a^2-b^2)^(1/2)+2*I*a*f^2*polylog(3,I* 
b*exp(I*(d*x+c))/(a-(a^2-b^2)^(1/2)))/b/d^3/(a^2-b^2)^(1/2)-2*I*a*f^2*poly 
log(3,I*b*exp(I*(d*x+c))/(a+(a^2-b^2)^(1/2)))/b/d^3/(a^2-b^2)^(1/2)
 
3.3.21.2 Mathematica [A] (warning: unable to verify)

Time = 1.67 (sec) , antiderivative size = 445, normalized size of antiderivative = 1.09 \[ \int \frac {(e+f x)^2 \sin (c+d x)}{a+b \sin (c+d x)} \, dx=\frac {x \left (3 e^2+3 e f x+f^2 x^2\right )}{3 b}-\frac {i a \left (-2 \sqrt {a^2-b^2} d f (e+f x) \operatorname {PolyLog}\left (2,\frac {b e^{i (c+d x)}}{-i a+\sqrt {-a^2+b^2}}\right )+2 \sqrt {a^2-b^2} d f (e+f x) \operatorname {PolyLog}\left (2,-\frac {b e^{i (c+d x)}}{i a+\sqrt {-a^2+b^2}}\right )-i \left (d^2 \left (2 \sqrt {-a^2+b^2} e^2 \arctan \left (\frac {i a+b e^{i (c+d x)}}{\sqrt {a^2-b^2}}\right )+\sqrt {a^2-b^2} f x (2 e+f x) \left (\log \left (1-\frac {b e^{i (c+d x)}}{-i a+\sqrt {-a^2+b^2}}\right )-\log \left (1+\frac {b e^{i (c+d x)}}{i a+\sqrt {-a^2+b^2}}\right )\right )\right )+2 \sqrt {a^2-b^2} f^2 \operatorname {PolyLog}\left (3,\frac {b e^{i (c+d x)}}{-i a+\sqrt {-a^2+b^2}}\right )-2 \sqrt {a^2-b^2} f^2 \operatorname {PolyLog}\left (3,-\frac {b e^{i (c+d x)}}{i a+\sqrt {-a^2+b^2}}\right )\right )\right )}{b \sqrt {-\left (a^2-b^2\right )^2} d^3} \]

input
Integrate[((e + f*x)^2*Sin[c + d*x])/(a + b*Sin[c + d*x]),x]
 
output
(x*(3*e^2 + 3*e*f*x + f^2*x^2))/(3*b) - (I*a*(-2*Sqrt[a^2 - b^2]*d*f*(e + 
f*x)*PolyLog[2, (b*E^(I*(c + d*x)))/((-I)*a + Sqrt[-a^2 + b^2])] + 2*Sqrt[ 
a^2 - b^2]*d*f*(e + f*x)*PolyLog[2, -((b*E^(I*(c + d*x)))/(I*a + Sqrt[-a^2 
 + b^2]))] - I*(d^2*(2*Sqrt[-a^2 + b^2]*e^2*ArcTan[(I*a + b*E^(I*(c + d*x) 
))/Sqrt[a^2 - b^2]] + Sqrt[a^2 - b^2]*f*x*(2*e + f*x)*(Log[1 - (b*E^(I*(c 
+ d*x)))/((-I)*a + Sqrt[-a^2 + b^2])] - Log[1 + (b*E^(I*(c + d*x)))/(I*a + 
 Sqrt[-a^2 + b^2])])) + 2*Sqrt[a^2 - b^2]*f^2*PolyLog[3, (b*E^(I*(c + d*x) 
))/((-I)*a + Sqrt[-a^2 + b^2])] - 2*Sqrt[a^2 - b^2]*f^2*PolyLog[3, -((b*E^ 
(I*(c + d*x)))/(I*a + Sqrt[-a^2 + b^2]))])))/(b*Sqrt[-(a^2 - b^2)^2]*d^3)
 
3.3.21.3 Rubi [A] (verified)

Time = 1.43 (sec) , antiderivative size = 369, normalized size of antiderivative = 0.90, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.385, Rules used = {5026, 17, 3042, 3804, 2694, 27, 2620, 3011, 2720, 7143}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(e+f x)^2 \sin (c+d x)}{a+b \sin (c+d x)} \, dx\)

\(\Big \downarrow \) 5026

\(\displaystyle \frac {\int (e+f x)^2dx}{b}-\frac {a \int \frac {(e+f x)^2}{a+b \sin (c+d x)}dx}{b}\)

\(\Big \downarrow \) 17

\(\displaystyle \frac {(e+f x)^3}{3 b f}-\frac {a \int \frac {(e+f x)^2}{a+b \sin (c+d x)}dx}{b}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {(e+f x)^3}{3 b f}-\frac {a \int \frac {(e+f x)^2}{a+b \sin (c+d x)}dx}{b}\)

\(\Big \downarrow \) 3804

\(\displaystyle \frac {(e+f x)^3}{3 b f}-\frac {2 a \int \frac {e^{i (c+d x)} (e+f x)^2}{2 e^{i (c+d x)} a-i b e^{2 i (c+d x)}+i b}dx}{b}\)

\(\Big \downarrow \) 2694

\(\displaystyle \frac {(e+f x)^3}{3 b f}-\frac {2 a \left (\frac {i b \int \frac {e^{i (c+d x)} (e+f x)^2}{2 \left (a-i b e^{i (c+d x)}+\sqrt {a^2-b^2}\right )}dx}{\sqrt {a^2-b^2}}-\frac {i b \int \frac {e^{i (c+d x)} (e+f x)^2}{2 \left (a-i b e^{i (c+d x)}-\sqrt {a^2-b^2}\right )}dx}{\sqrt {a^2-b^2}}\right )}{b}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {(e+f x)^3}{3 b f}-\frac {2 a \left (\frac {i b \int \frac {e^{i (c+d x)} (e+f x)^2}{a-i b e^{i (c+d x)}+\sqrt {a^2-b^2}}dx}{2 \sqrt {a^2-b^2}}-\frac {i b \int \frac {e^{i (c+d x)} (e+f x)^2}{a-i b e^{i (c+d x)}-\sqrt {a^2-b^2}}dx}{2 \sqrt {a^2-b^2}}\right )}{b}\)

\(\Big \downarrow \) 2620

\(\displaystyle \frac {(e+f x)^3}{3 b f}-\frac {2 a \left (\frac {i b \left (\frac {(e+f x)^2 \log \left (1-\frac {i b e^{i (c+d x)}}{\sqrt {a^2-b^2}+a}\right )}{b d}-\frac {2 f \int (e+f x) \log \left (1-\frac {i b e^{i (c+d x)}}{a+\sqrt {a^2-b^2}}\right )dx}{b d}\right )}{2 \sqrt {a^2-b^2}}-\frac {i b \left (\frac {(e+f x)^2 \log \left (1-\frac {i b e^{i (c+d x)}}{a-\sqrt {a^2-b^2}}\right )}{b d}-\frac {2 f \int (e+f x) \log \left (1-\frac {i b e^{i (c+d x)}}{a-\sqrt {a^2-b^2}}\right )dx}{b d}\right )}{2 \sqrt {a^2-b^2}}\right )}{b}\)

\(\Big \downarrow \) 3011

\(\displaystyle \frac {(e+f x)^3}{3 b f}-\frac {2 a \left (\frac {i b \left (\frac {(e+f x)^2 \log \left (1-\frac {i b e^{i (c+d x)}}{\sqrt {a^2-b^2}+a}\right )}{b d}-\frac {2 f \left (\frac {i (e+f x) \operatorname {PolyLog}\left (2,\frac {i b e^{i (c+d x)}}{a+\sqrt {a^2-b^2}}\right )}{d}-\frac {i f \int \operatorname {PolyLog}\left (2,\frac {i b e^{i (c+d x)}}{a+\sqrt {a^2-b^2}}\right )dx}{d}\right )}{b d}\right )}{2 \sqrt {a^2-b^2}}-\frac {i b \left (\frac {(e+f x)^2 \log \left (1-\frac {i b e^{i (c+d x)}}{a-\sqrt {a^2-b^2}}\right )}{b d}-\frac {2 f \left (\frac {i (e+f x) \operatorname {PolyLog}\left (2,\frac {i b e^{i (c+d x)}}{a-\sqrt {a^2-b^2}}\right )}{d}-\frac {i f \int \operatorname {PolyLog}\left (2,\frac {i b e^{i (c+d x)}}{a-\sqrt {a^2-b^2}}\right )dx}{d}\right )}{b d}\right )}{2 \sqrt {a^2-b^2}}\right )}{b}\)

\(\Big \downarrow \) 2720

\(\displaystyle \frac {(e+f x)^3}{3 b f}-\frac {2 a \left (\frac {i b \left (\frac {(e+f x)^2 \log \left (1-\frac {i b e^{i (c+d x)}}{\sqrt {a^2-b^2}+a}\right )}{b d}-\frac {2 f \left (\frac {i (e+f x) \operatorname {PolyLog}\left (2,\frac {i b e^{i (c+d x)}}{a+\sqrt {a^2-b^2}}\right )}{d}-\frac {f \int e^{-i (c+d x)} \operatorname {PolyLog}\left (2,\frac {i b e^{i (c+d x)}}{a+\sqrt {a^2-b^2}}\right )de^{i (c+d x)}}{d^2}\right )}{b d}\right )}{2 \sqrt {a^2-b^2}}-\frac {i b \left (\frac {(e+f x)^2 \log \left (1-\frac {i b e^{i (c+d x)}}{a-\sqrt {a^2-b^2}}\right )}{b d}-\frac {2 f \left (\frac {i (e+f x) \operatorname {PolyLog}\left (2,\frac {i b e^{i (c+d x)}}{a-\sqrt {a^2-b^2}}\right )}{d}-\frac {f \int e^{-i (c+d x)} \operatorname {PolyLog}\left (2,\frac {i b e^{i (c+d x)}}{a-\sqrt {a^2-b^2}}\right )de^{i (c+d x)}}{d^2}\right )}{b d}\right )}{2 \sqrt {a^2-b^2}}\right )}{b}\)

\(\Big \downarrow \) 7143

\(\displaystyle \frac {(e+f x)^3}{3 b f}-\frac {2 a \left (\frac {i b \left (\frac {(e+f x)^2 \log \left (1-\frac {i b e^{i (c+d x)}}{\sqrt {a^2-b^2}+a}\right )}{b d}-\frac {2 f \left (\frac {i (e+f x) \operatorname {PolyLog}\left (2,\frac {i b e^{i (c+d x)}}{a+\sqrt {a^2-b^2}}\right )}{d}-\frac {f \operatorname {PolyLog}\left (3,\frac {i b e^{i (c+d x)}}{a+\sqrt {a^2-b^2}}\right )}{d^2}\right )}{b d}\right )}{2 \sqrt {a^2-b^2}}-\frac {i b \left (\frac {(e+f x)^2 \log \left (1-\frac {i b e^{i (c+d x)}}{a-\sqrt {a^2-b^2}}\right )}{b d}-\frac {2 f \left (\frac {i (e+f x) \operatorname {PolyLog}\left (2,\frac {i b e^{i (c+d x)}}{a-\sqrt {a^2-b^2}}\right )}{d}-\frac {f \operatorname {PolyLog}\left (3,\frac {i b e^{i (c+d x)}}{a-\sqrt {a^2-b^2}}\right )}{d^2}\right )}{b d}\right )}{2 \sqrt {a^2-b^2}}\right )}{b}\)

input
Int[((e + f*x)^2*Sin[c + d*x])/(a + b*Sin[c + d*x]),x]
 
output
(e + f*x)^3/(3*b*f) - (2*a*(((-1/2*I)*b*(((e + f*x)^2*Log[1 - (I*b*E^(I*(c 
 + d*x)))/(a - Sqrt[a^2 - b^2])])/(b*d) - (2*f*((I*(e + f*x)*PolyLog[2, (I 
*b*E^(I*(c + d*x)))/(a - Sqrt[a^2 - b^2])])/d - (f*PolyLog[3, (I*b*E^(I*(c 
 + d*x)))/(a - Sqrt[a^2 - b^2])])/d^2))/(b*d)))/Sqrt[a^2 - b^2] + ((I/2)*b 
*(((e + f*x)^2*Log[1 - (I*b*E^(I*(c + d*x)))/(a + Sqrt[a^2 - b^2])])/(b*d) 
 - (2*f*((I*(e + f*x)*PolyLog[2, (I*b*E^(I*(c + d*x)))/(a + Sqrt[a^2 - b^2 
])])/d - (f*PolyLog[3, (I*b*E^(I*(c + d*x)))/(a + Sqrt[a^2 - b^2])])/d^2)) 
/(b*d)))/Sqrt[a^2 - b^2]))/b
 

3.3.21.3.1 Defintions of rubi rules used

rule 17
Int[(c_.)*((a_.) + (b_.)*(x_))^(m_.), x_Symbol] :> Simp[c*((a + b*x)^(m + 1 
)/(b*(m + 1))), x] /; FreeQ[{a, b, c, m}, x] && NeQ[m, -1]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 2620
Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/ 
((a_) + (b_.)*((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp 
[((c + d*x)^m/(b*f*g*n*Log[F]))*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x] - Si 
mp[d*(m/(b*f*g*n*Log[F]))   Int[(c + d*x)^(m - 1)*Log[1 + b*((F^(g*(e + f*x 
)))^n/a)], x], x] /; FreeQ[{F, a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]
 

rule 2694
Int[((F_)^(u_)*((f_.) + (g_.)*(x_))^(m_.))/((a_.) + (b_.)*(F_)^(u_) + (c_.) 
*(F_)^(v_)), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[2*(c/q)   Int 
[(f + g*x)^m*(F^u/(b - q + 2*c*F^u)), x], x] - Simp[2*(c/q)   Int[(f + g*x) 
^m*(F^u/(b + q + 2*c*F^u)), x], x]] /; FreeQ[{F, a, b, c, f, g}, x] && EqQ[ 
v, 2*u] && LinearQ[u, x] && NeQ[b^2 - 4*a*c, 0] && IGtQ[m, 0]
 

rule 2720
Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Simp[v/D[v, x] 
   Subst[Int[FunctionOfExponentialFunction[u, x]/x, x], x, v], x]] /; Funct 
ionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; FreeQ 
[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x)) 
*(F_)[v_] /; FreeQ[{a, b, c}, x] && InverseFunctionQ[F[x]]]
 

rule 3011
Int[Log[1 + (e_.)*((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.)]*((f_.) + (g_.) 
*(x_))^(m_.), x_Symbol] :> Simp[(-(f + g*x)^m)*(PolyLog[2, (-e)*(F^(c*(a + 
b*x)))^n]/(b*c*n*Log[F])), x] + Simp[g*(m/(b*c*n*Log[F]))   Int[(f + g*x)^( 
m - 1)*PolyLog[2, (-e)*(F^(c*(a + b*x)))^n], x], x] /; FreeQ[{F, a, b, c, e 
, f, g, n}, x] && GtQ[m, 0]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3804
Int[((c_.) + (d_.)*(x_))^(m_.)/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Sy 
mbol] :> Simp[2   Int[(c + d*x)^m*(E^(I*(e + f*x))/(I*b + 2*a*E^(I*(e + f*x 
)) - I*b*E^(2*I*(e + f*x)))), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ 
[a^2 - b^2, 0] && IGtQ[m, 0]
 

rule 5026
Int[(((e_.) + (f_.)*(x_))^(m_.)*Sin[(c_.) + (d_.)*(x_)]^(n_.))/((a_) + (b_. 
)*Sin[(c_.) + (d_.)*(x_)]), x_Symbol] :> Simp[1/b   Int[(e + f*x)^m*Sin[c + 
 d*x]^(n - 1), x], x] - Simp[a/b   Int[(e + f*x)^m*(Sin[c + d*x]^(n - 1)/(a 
 + b*Sin[c + d*x])), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] & 
& IGtQ[n, 0]
 

rule 7143
Int[PolyLog[n_, (c_.)*((a_.) + (b_.)*(x_))^(p_.)]/((d_.) + (e_.)*(x_)), x_S 
ymbol] :> Simp[PolyLog[n + 1, c*(a + b*x)^p]/(e*p), x] /; FreeQ[{a, b, c, d 
, e, n, p}, x] && EqQ[b*d, a*e]
 
3.3.21.4 Maple [F]

\[\int \frac {\left (f x +e \right )^{2} \sin \left (d x +c \right )}{a +b \sin \left (d x +c \right )}d x\]

input
int((f*x+e)^2*sin(d*x+c)/(a+b*sin(d*x+c)),x)
 
output
int((f*x+e)^2*sin(d*x+c)/(a+b*sin(d*x+c)),x)
 
3.3.21.5 Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 1646 vs. \(2 (348) = 696\).

Time = 0.44 (sec) , antiderivative size = 1646, normalized size of antiderivative = 4.03 \[ \int \frac {(e+f x)^2 \sin (c+d x)}{a+b \sin (c+d x)} \, dx=\text {Too large to display} \]

input
integrate((f*x+e)^2*sin(d*x+c)/(a+b*sin(d*x+c)),x, algorithm="fricas")
 
output
1/6*(2*(a^2 - b^2)*d^3*f^2*x^3 + 6*(a^2 - b^2)*d^3*e*f*x^2 + 6*(a^2 - b^2) 
*d^3*e^2*x - 6*a*b*f^2*sqrt(-(a^2 - b^2)/b^2)*polylog(3, -(I*a*cos(d*x + c 
) + a*sin(d*x + c) + (b*cos(d*x + c) - I*b*sin(d*x + c))*sqrt(-(a^2 - b^2) 
/b^2))/b) + 6*a*b*f^2*sqrt(-(a^2 - b^2)/b^2)*polylog(3, -(I*a*cos(d*x + c) 
 + a*sin(d*x + c) - (b*cos(d*x + c) - I*b*sin(d*x + c))*sqrt(-(a^2 - b^2)/ 
b^2))/b) - 6*a*b*f^2*sqrt(-(a^2 - b^2)/b^2)*polylog(3, -(-I*a*cos(d*x + c) 
 + a*sin(d*x + c) + (b*cos(d*x + c) + I*b*sin(d*x + c))*sqrt(-(a^2 - b^2)/ 
b^2))/b) + 6*a*b*f^2*sqrt(-(a^2 - b^2)/b^2)*polylog(3, -(-I*a*cos(d*x + c) 
 + a*sin(d*x + c) - (b*cos(d*x + c) + I*b*sin(d*x + c))*sqrt(-(a^2 - b^2)/ 
b^2))/b) + 6*(-I*a*b*d*f^2*x - I*a*b*d*e*f)*sqrt(-(a^2 - b^2)/b^2)*dilog(( 
I*a*cos(d*x + c) - a*sin(d*x + c) + (b*cos(d*x + c) + I*b*sin(d*x + c))*sq 
rt(-(a^2 - b^2)/b^2) - b)/b + 1) + 6*(I*a*b*d*f^2*x + I*a*b*d*e*f)*sqrt(-( 
a^2 - b^2)/b^2)*dilog((I*a*cos(d*x + c) - a*sin(d*x + c) - (b*cos(d*x + c) 
 + I*b*sin(d*x + c))*sqrt(-(a^2 - b^2)/b^2) - b)/b + 1) + 6*(I*a*b*d*f^2*x 
 + I*a*b*d*e*f)*sqrt(-(a^2 - b^2)/b^2)*dilog((-I*a*cos(d*x + c) - a*sin(d* 
x + c) + (b*cos(d*x + c) - I*b*sin(d*x + c))*sqrt(-(a^2 - b^2)/b^2) - b)/b 
 + 1) + 6*(-I*a*b*d*f^2*x - I*a*b*d*e*f)*sqrt(-(a^2 - b^2)/b^2)*dilog((-I* 
a*cos(d*x + c) - a*sin(d*x + c) - (b*cos(d*x + c) - I*b*sin(d*x + c))*sqrt 
(-(a^2 - b^2)/b^2) - b)/b + 1) - 3*(a*b*d^2*e^2 - 2*a*b*c*d*e*f + a*b*c^2* 
f^2)*sqrt(-(a^2 - b^2)/b^2)*log(2*b*cos(d*x + c) + 2*I*b*sin(d*x + c) +...
 
3.3.21.6 Sympy [F]

\[ \int \frac {(e+f x)^2 \sin (c+d x)}{a+b \sin (c+d x)} \, dx=\int \frac {\left (e + f x\right )^{2} \sin {\left (c + d x \right )}}{a + b \sin {\left (c + d x \right )}}\, dx \]

input
integrate((f*x+e)**2*sin(d*x+c)/(a+b*sin(d*x+c)),x)
 
output
Integral((e + f*x)**2*sin(c + d*x)/(a + b*sin(c + d*x)), x)
 
3.3.21.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {(e+f x)^2 \sin (c+d x)}{a+b \sin (c+d x)} \, dx=\text {Exception raised: ValueError} \]

input
integrate((f*x+e)^2*sin(d*x+c)/(a+b*sin(d*x+c)),x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(4*b^2-4*a^2>0)', see `assume?` f 
or more de
 
3.3.21.8 Giac [F]

\[ \int \frac {(e+f x)^2 \sin (c+d x)}{a+b \sin (c+d x)} \, dx=\int { \frac {{\left (f x + e\right )}^{2} \sin \left (d x + c\right )}{b \sin \left (d x + c\right ) + a} \,d x } \]

input
integrate((f*x+e)^2*sin(d*x+c)/(a+b*sin(d*x+c)),x, algorithm="giac")
 
output
integrate((f*x + e)^2*sin(d*x + c)/(b*sin(d*x + c) + a), x)
 
3.3.21.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(e+f x)^2 \sin (c+d x)}{a+b \sin (c+d x)} \, dx=\int \frac {\sin \left (c+d\,x\right )\,{\left (e+f\,x\right )}^2}{a+b\,\sin \left (c+d\,x\right )} \,d x \]

input
int((sin(c + d*x)*(e + f*x)^2)/(a + b*sin(c + d*x)),x)
 
output
int((sin(c + d*x)*(e + f*x)^2)/(a + b*sin(c + d*x)), x)